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Abstract—Clear-air Doppler radars, also known as clear-air
radar windprofilers, have been used for decades to remotely
monitor wind velocities in the troposphere, stratosphere, and
mesosphere. The traditional assumption is that the Doppler
velocity (the first normalized moment of the Doppler spectrum)
is an unbiased measure of the radial wind velocity within the
radar’s observation volume. Here we show that “intermittency
fluxes”, i.e., covariances of the turbulently fluctuating clear-air
radar reflectivity and the turbulently fluctuating radial wind
velocity, lead to systematic differences between the Doppler ve-
locity and the (true) radial wind velocity. We use turbulent fields
computationally generated by means of a large-eddy simulation
to quantify this effect. We show that these biases may amount
to several tens of centimeters per second in the atmospheric
boundary layer, which is consistent with the biases observed with
vertically pointing boundary-layer radar windprofilers.

I. INTRODUCTION

Since the 1970s, clear-air radars, also known as radar
windprofilers, have been used to remotely probe wind and
turbulence characteristics in the troposphere, stratosphere, and
mesosphere [1] [2] [3] [4] [5] [6]. Radar windprofilers exploit
the very weak but still observable UHF and VHF radio waves
backscattered from turbulent refractive-index perturbations in
the optically clear atmosphere. The theory of acoustic and
electromagnetic wave propagation through the turbulent atmo-
sphere had been pioneered by Tatarskii [7] [8].

In the 1980s and 1990s, after radar windprofilers had
reached a certain maturity, biases in the Doppler velocities
observed with vertically pointing profilers were reported that
could no longer be attributed to instrumental deficiencies.
Instead, evidence accumulated that such biases were caused
by certain correlations between wind velocity fluctuations and
reflectivity fluctuations [9] [10]. Those mechanisms, how-
ever, relied on the presence of gravity waves [9] or Kelvin-
Helmholtz billows [10] and therefore could not account for
the velocity biases of a few tens of centimeters per second
that Angevine [11] observed within the convective boundary
layer. Observational and theoretical aspects of those Doppler
velocity biases have been discussed in more detail in [12] and
[6].

Around 1970, the large-eddy simulation (LES) technique
was pioneered by Lilly [13] and Deardorff [14]. LES is now

the method of choice for computationally investigating the
structure and dynamics of the atmospheric boundary layer,
and LES experiments may be considered in many respects
to be equivalent, if not superior, to real-world boundary-layer
experiments [15].

In 1999, we used for the first time LES-generated fields
to synthesize realistic clear-air radar signals [16]. The main
motivation for that study was to reproduce Angevine’s [11]
observations of velocity biases in the convective boundary
layer.

II. INTERMITTENCY IN ATMOSPHERIC TURBULENCE

Classical turbulence theory [17] [18] and the classical theory
of wave propagation through the turbulent atmosphere [7] [8]
rely on the assumption that turbulent dissipation rates and
turbulent structure parameters may be treated as deterministic
quantities that vary only slowly in space and time. In their
two 1962 landmark papers, however, Kolmogorov [19] and
Obukhov [20] showed that at high Reynolds numbers as
encountered in the atmosphere and the oceans, dissipation rates
have to be treated as random variables and that the statistics
of that intermittency has to be accounted for in a complete
theory of locally homogeneous turbulence.

III. INTERMITTENCY FLUXES AND DOPPLER VELOCITY
BIASES

The Doppler velocity vD is the first moment M1 of the
Doppler spectrum, normalized by the zeroth moment. Assum-
ing that the profiler points in the vertical direction and inter-
preting the Doppler spectrum as a histogram of reflectivity-
weighted radial (here vertical) wind velocities, we can write

vD =
M1

M0
=

⟨ηw⟩
⟨η⟩

, (1)

where w is the vertical wind velocity and η is the clear-air
volume reflectivity. Now, we treat η and w as random variables
and write them as sums of mean value and fluctuation:

η = ⟨η⟩+ η′, w = ⟨w⟩+ w′. (2)



This gives

vD =
⟨η⟩⟨w⟩+ ⟨η′w′⟩

⟨η⟩
= ⟨w⟩+∆w, (3)

where

∆w =
⟨η′w′⟩
⟨η⟩

(4)

is the velocity bias.
Note that ⟨η′w′⟩ may be interpreted as a turbulent clear-

air reflectivity flux. We suggest to refer to such a flux as
intermittency flux because in traditional propagation theory [7]
[8], which does not account for intermittency and which treats
η (which is proportional to C2

n [7]) as a deterministic variable,
⟨η′w′⟩ is always zero.

IV. USING LARGE-EDDY SIMULATION TO COMPUTE
INTERMITTENCY FLUXES

We used a large-eddy simulation similar to the one in our
previous study [16], where we assumed that the dwell time
is short compared to the large-eddy overturning time scale
and that the radar’s observation volume is small compared to
the energy-containing scales in the convective boundary layer.
In the previous study, we did not find a significant velocity
bias. In the current study, however, we allowed the effective
radar sampling volume to be large compared to the large-
eddy scale, and we find velocity biases with magnitudes of
up to 50 cm s−1 (see Fig. 1), consistent with Angevine’s [11]
observations.
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Fig. 1. Vertical profiles of Doppler velocity biases caused by intermittency
fluxes of the temperature structure parameter, C2

T , and the humidity structure
parameter, C2

q , respectively. The profiles were computed from an LES-
generated convective boundary layer similar to the LES described in our
previous study [16].

V. SUMMARY AND CONCLUSIONS

“Intermittency fluxes” of clear-air radar reflectivity can lead
to Doppler velocity biases observed with vertically pointing
radar windprofilers in the convective boundary layer (CBL).

We have used the large-eddy simulation (LES) technique to
computationally generate a CBL, and we computed vertical
profiles of Doppler velocity biases that agree qualitatively and
quantitatively with biases observed in field measurements.
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